Interactive effects of elevated CO2, warming, and drought on photosynthesis of Deschampsia flexuosa in a temperate heath ecosystem
نویسندگان
چکیده
Global change factors affect plant carbon uptake in concert. In order to investigate the response directions and potential interactive effects, and to understand the underlying mechanisms, multifactor experiments are needed. The focus of this study was on the photosynthetic response to elevated CO(2) [CO2; free air CO(2) enrichment (FACE)], drought (D; water-excluding curtains), and night-time warming (T; infrared-reflective curtains) in a temperate heath. A/C(i) curves were measured, allowing analysis of light-saturated net photosynthesis (P(n)), light- and CO(2)-saturated net photosynthesis (P(max)), stomatal conductance (g(s)), the maximal rate of Rubisco carboxylation (V(cmax)), and the maximal rate of ribulose bisphosphate (RuBP) regeneration (J(max)) along with leaf δ(13)C, and carbon and nitrogen concentration on a monthly basis in the grass Deschampsia flexuosa. Seasonal drought reduced P(n) via g(s), but severe (experimental) drought decreased P(n) via a reduction in photosynthetic capacity (P(max), J(max), and V(cmax)). The effects were completely reversed by rewetting and stimulated P(n) via photosynthetic capacity stimulation. Warming increased early and late season P(n) via higher P(max) and J(max). Elevated CO(2) did not decrease g(s), but stimulated P(n) via increased C(i). The T×CO2 synergistically increased plant carbon uptake via photosynthetic capacity up-regulation in early season and by better access to water after rewetting. The effects of the combination of drought and elevated CO(2) depended on soil water availability, with additive effects when the soil water content was low and D×CO2 synergistic stimulation of P(n) after rewetting. The photosynthetic responses appeared to be highly influenced by growth pattern. The grass has opportunistic water consumption, and a biphasic growth pattern allowing for leaf dieback at low soil water availability followed by rapid re-growth of active leaves when rewetted and possibly a large resource allocation capability mediated by the rhizome. This growth characteristic allowed for the photosynthetic capacity up-regulations that mediated the T×CO2 and D×CO2 synergistic effects on photosynthesis. These are clearly advantageous characteristics when exposed to climate changes. In conclusion, after 1 year of experimentation, the limitations by low soil water availability and stimulation in early and late season by warming clearly structure and interact with the photosynthetic response to elevated CO(2) in this grassland species.
منابع مشابه
Global change effects on plant-soil interactions
As plants of different life-forms generate different soil communities, assessment of climate change impacts on soil communities and soil services must consider how these impacts are conditioned by the vegetation above. We investigated how soil communities under different plant species in the same ecosystem respond to global change. In a heathland FACE-experiment, we modelled projected global ch...
متن کاملOff-season biogenic volatile organic compound emissions from heath mesocosms: responses to vegetation cutting
Biogenic volatile organic compounds (BVOCs) affect both atmospheric processes and ecological interactions. Our primary aim was to differentiate between BVOC emissions from above- and belowground plant parts and heath soil outside the growing season. The second aim was to assess emissions from herbivory, mimicked by cutting the plants. Mesocosms from a temperate Deschampsia flexuosa-dominated he...
متن کاملDefoliation reduces soil biota – and modifies stimulating effects of elevated CO 2
To understand the responses to external disturbance such as defoliation and possible feedback mechanisms at global change in terrestrial ecosystems, it is necessary to examine the extent and nature of effects on aboveground-belowground interactions. We studied a temperate heathland system subjected to experimental climate and atmospheric factors based on prognoses for year 2075 and further expo...
متن کاملPhotosynthetic parameter estimations by considering interactive effects of light, temperature and CO2 concentration
Biochemical leaf photosynthesis models are evaluated by laboratory results andhave been widely used at field scale for quantification of plant production,biochemical cycles and land surface processes. It is a key issue to search forappropriate model structure and parameterization, which determine modeluncertainty. A leaf photosynthesis model that couples the Farquhar-vonCaemmerer-Berry (FvCB) f...
متن کاملWarming Reduces Carbon Losses from Grassland Exposed to Elevated Atmospheric Carbon Dioxide
The flux of carbon dioxide (CO2) between terrestrial ecosystems and the atmosphere may ameliorate or exacerbate climate change, depending on the relative responses of ecosystem photosynthesis and respiration to warming temperatures, rising atmospheric CO2, and altered precipitation. The combined effect of these global change factors is especially uncertain because of their potential for interac...
متن کامل